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‡ Steklov Mathematical Institute, Gubkina 8, 117966, Moscow, Russia
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Abstract. We study models of quantum-statistical mechanics which can be solved by the
algebraic Bethe ansatz. The general method of calculating correlation functions is based on the
method of determinant representations. The auxiliary Fock space and auxiliary Bose fields are
introduced in order to remove the two-body scattering and represent correlation functions as a
mean value of a determinant of a Fredholm integral operator; the representation has a simple
form for large space and time separations. In this paper we explain how to calculate the mean
value in the auxiliary Fock space of an asymptotic expression of the Fredholm determinant. It
is necessary for the evaluation of the asymptotic form of the physical correlation functions.

1. Introduction

In this paper we use an example of the quantum nonlinear Schrödinger equation, i.e. the one-
dimensional Bose gas with delta-function interactions, in order to illustrate the development
in the theory of quantum correlation functions. The correlation function of local fields
in this model was studied in [1–4], and its determinant representation was obtained in
[1]. The representation of the correlation function in terms of the Fredholm determinant
of a linear integral operator is the basis of our approach. The differential equations for
the Fredholm determinant were obtained in [2]. They are directly related to the classical
nonlinear Schr̈odinger equation. These differential equations were solved in the asymptotic
regime of large space and time separations; the simplified asymptotic form of the Fredholm
determinant was obtained in [3, 4]. This expression is an operator in an auxiliary Fock space.
In order to find the asymptotics of the correlation function, one should calculate the vacuum
mean value of this expression. It is a necessary step in the calculation of asymptotics of
physical correlation functions. The problem of evaluating the vacuum expectation (mean
value) is a combinatorial problem, closely related to the procedure of the normal ordering
in the quantum field theory. In this paper we study just this problem.

We briefly recall the basic definitions of the model under consideration for the reader’s
convenience. The quantum nonlinear Schrödinger equation can be described in terms of the
canonical Bose fieldsψ(x, t) andψ†(x, t) (x ∈ R) obeying the equal time commutation
relations

[ψ(x, t), ψ†(y, t)] = δ(x − y). (1.1)
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The Hamiltonian and momentum of the model are

H =
∫

dx (∂xψ
†(x)∂xψ(x)+ cψ†(x)ψ†(x)ψ(x)ψ(x)− hψ†(x)ψ(x)) (1.2)

and

P = −i
∫

dx ψ†(x)∂xψ(x). (1.3)

Here 0< c 6∞ is the coupling constant andh is the chemical potential. The spectrum of
the model was first described by Lieb and Liniger [5] and Lieb [6]. The Lax representation
for the corresponding classical equation of motion

i
∂

∂t
ψ = [ψ,H ] = − ∂2

∂x2
ψ + 2cψ†ψψ − hψ (1.4)

was found by Zakharov and Shabat [7]. The quantum inverse scattering method for the
model was formulated by Faddeev and Sklyanin [8].

The quantum nonlinear Schrödinger equation is equivalent to the Bose gas with delta-
function interactions. In the sector withN particles the Hamiltonian of the Bose gas is
given by

HN = −
N∑
j=1

∂2

∂z2
j

+ 2c
∑

16j<k6N
δ(zj − zk)−Nh. (1.5)

In this paper we shall consider the thermodynamics of this model. The partition function
and free energy of the model are defined by

Z = tr e−
H
T = e−

F
T . (1.6)

The free energyF has been explicitly represented in terms of the Yang–Yang [9] equation

ε(λ) = λ2− h− T

2π

∫ ∞
−∞

dµ
2c

c2+ (λ− µ)2 ln(1+ e−
ε(µ)

T ) (1.7)

F = − T
2π

∫ ∞
−∞

ln(1+ e−
ε(µ)

T ). (1.8)

The correlation function studied in this paper is defined by

〈ψ(0, 0)ψ†(x, t)〉T = tr(e−
H
T ψ(0, 0)ψ†(x, t))

tr(e−
H
T )

. (1.9)

This paper is organized as follows. In section 2 we shall remind the reader of the
asymptotic expression for the Fredholm determinant that represents the correlation function.
We shall also describe its dependence on the quantum fields. Section 3 is devoted to the
main results of the paper. In it we develop a technique for the evaluation of the mean values
in auxiliary Fock space. It is related to the problems of the normal ordering in quantum field
theory. In section 4 we use this technique to calculate the mean value of the asymptotic
expressions for the Fredholm determinant.
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2. Asymptotics of the Fredholm determinant

In order to find the determinant representation of the correlation functions one has to
introduce an auxiliary Fock space and three Bose fieldsψ(λ), φ(λ), and8(λ), which
are linear combinations of annihilation and creation operatorsp(λ) andq(λ):

ψ(λ) = qψ(λ)+ pψ(λ)
φ(λ) = qφ(λ)+ pφ(λ)
8(λ) = q8(λ)+ p8(λ).

(2.1)

The operatorsp(λ) annihilate the Fock vacuum

p(λ)|0) = 0 (2.2)

and the corresponding creation operatorsq(λ) annihilate the dual vacuum

(0|q(λ) = 0. (2.3)

We shall also use the function

h(λ, µ) = (λ− µ+ ic)/ic (2.4)

which enters into the non-vanishing commutators

[pψ(λ), qφ(µ)] = −[pφ(λ), qψ(µ)] = ln

(
h(µ, λ)

h(λ, µ)

)
(2.5)

[pψ(λ), q8(µ)] = [p8(λ), qψ(µ)] = [pψ(λ), qψ(µ)] = ln(h(λ, µ)h(µ, λ)). (2.6)

The relation of these quantum fields to thoseφA2, φD1 used in [1–4] are

φ(λ) = φA2(λ)− φD1(λ) 8(λ) = φA2(λ)+ φD1(λ). (2.7)

The vacuum vector is normalized by unity(0|0) = 1.
The quantum fields (2.1) are linear combinations of the three canonical Bose fields. The

derivative of the fieldψ(λ) will also be important:

ψ ′(λ) ≡ ∂

∂λ
ψ(λ) = q ′ψ(λ)+ p′ψ(λ). (2.8)

Non-zero commutation relations between the derivatives of annihilation operatorsp(λ) and
creation operatorsq(λ) are:

[p′ψ(λ), qφ(µ)] = [pφ(λ), q
′
ψ(µ)] =

2ic

c2+ (λ− µ)2 (2.9)

[p′ψ(λ), q
′
ψ(µ)] =

(
1

λ− µ+ ic

)2

+
(

1

µ− λ+ ic

)2

(2.10)

[p8(λ), q
′
ψ(µ)] = [pψ(λ), q

′
ψ(µ)] = −[p′ψ(λ), q8(µ)] =

2(µ− λ)
(λ− µ)2+ c2

. (2.11)

It is worth mentioning that quantum fields (2.1) belong to the same Abelian sub-algebra.
They all commute:

[ψ(λ), ψ(µ)] = [ψ(λ), φ(µ)] = [ψ(λ),8(µ)] = 0

[φ(λ),8(µ)] = [φ(λ), φ(µ)] = [8(λ),8(µ)] = 0.
(2.12)

This property plays a very important role in the calculation of vacuum mean values in
auxiliary Fock space.
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In [1] the correlation function of local fields of the quantum nonlinear Schrödinger
equation was represented as a mean value of a determinant of an integral operator, depending
on the fields (2.1). At large spacex and timet separation the determinant simplifies to [4]:

〈ψ(0, 0)ψ†(x, t)〉T = (0|Q(x, t)
[

1+ o

(
1√
t

)]
|0) (2.13)

whereQ(x, t) is an operator in auxiliary Fock space

Q(x, t) = C([φ(λ)], [8(λ)])(2t)(ν−1)2/2eψ(λ0)−itλ2
0−iht

× exp

{
1

2π

∫ ∞
−∞

dλ (|x − 2λt | − i sign(λ− λ0)ψ
′(λ))

× ln[1− ϑ(λ)(1+ eφ(λ) sign(λ−λ0))]

}
. (2.14)

HereC is a smooth bounded functional, which may depend onx and t only through the
ratio x/2t = λ0, which remains fixed. The Fermi weightϑ(λ) is defined by

ϑ(λ) = (1+ eε(λ)/T )−1 (2.15)

and

ν = i

2π
ln{[1− ϑ(λ0)(1+ e−φ(λ0))][1 − ϑ(λ0)(1+ eφ(λ0))]}. (2.16)

In this paper our main aim is to evaluate the mean value of the right-hand side of (2.14).
Due to relations (2.5) and (2.6), the creation and annihilation parts of the fieldsφ and8
commute with each other. Thus the only non-zero contribution to the vacuum mean value
is provided by normal ordering of expressions containing the fieldψ(λ). It is easy to find
the contribution of the factor eψ(λ0) (see (2.14)). Indeed let us move this exponent to the
left

(0|eψ(λ0) = (0|epψ(λ0). (2.17)

After this one can move epψ(λ0) to the right using obvious relations:

[pψ(λ0), φ(λ0)] = 0 (2.18)

[pψ(λ0), ν] = 0 (2.19)

epψ(λ0)φ(µ) =
(
φ(µ)+ ln

h(µ, λ0)

h(λ0, µ)

)
epψ(λ0) (2.20)

epψ(λ0)8(µ) = (8(µ)+ ln[h(λ0, µ)h(µ, λ0)])e
pψ(λ0) (2.21)

epψ(λ0)ψ ′(µ) =
(
ψ ′(µ)+ 2(µ− λ0)

(µ− λ0)2+ c2

)
epψ(λ0) (2.22)

and

epψ(λ0)|0) = |0). (2.23)

Thus we arrive at

(0|Q(x, t)|0) = (0|C̃([φ(λ)], [8(λ)])(2t)(ν−1)2/2e−itλ2
0−iht

× exp

{
1

2π

∫ ∞
−∞

dλ

(
|x − 2λt | − i sign(λ− λ0)

[
ψ ′(λ)+ 2(λ− λ0)

(λ− λ0)2+ c2

])
× ln

[
1− ϑ(λ)

(
1+ exp

[
sign(λ− λ0)

(
φ(λ)+ ln

h(λ, λ0)

h(λ0, λ)

)])]}
|0).

(2.24)
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Here the functional̃C([φ], [8]) can be obtained from the functionalC([φ], [8]) by shifting
of the arguments of the last one according to rules (2.20) and (2.21).

Now the right-hand side of (2.24) can be written in the following form

(0|Q(x, t)|0) = (0| exp

{∫ ∞
−∞

dλψ ′(λ)f (λ|φ(λ))
}
F([φ], [8])|0). (2.25)

Here

f (λ|φ(λ)) = sign(λ− λ0)

2π i
ln

[
1− ϑ(λ)

(
1+ exp

[
sign(λ− λ0)

(
φ(λ)+ ln

h(λ, λ0)

h(λ0, λ)

)])]
(2.26)

and

F([φ], [8]) = C̃([φ(λ)], [8(λ)])(2t)(ν−1)2/2e−itλ2
0−iht

× exp

{
1

2π

∫ ∞
−∞

dλ

(
|x − 2λt | − 2i sign(λ− λ0)

λ− λ0

(λ− λ0)2+ c2

)
× ln

[
1− ϑ(λ)

(
1+ exp

[
sign(λ− λ0)

(
φ(λ)+ ln

h(λ, λ0)

h(λ0, λ)

)])]}
.

(2.27)

In the next section we shall evaluate the right-hand side of (2.25).

3. Evaluation of the mean value

The main purpose of this section is to evaluate the mean value

(0| exp

{∫ ∞
−∞

dλψ ′(λ)f (λ|φ(λ))
}
F([φ], [8])|0). (3.1)

Here complex functionf becomes an operator, because it depends on quantum fieldφ(λ).
It is worth mentioning that the particular case of (3.1), whenf (λ|φ(λ)) is a linear function
of the fieldφ(λ), was first considered in [10].

We remind the reader of the definitions

ψ ′(λ) = p′ψ(λ)+ q ′ψ(λ)
φ(λ) = pφ(λ)+ qφ(λ)
8(λ) = p8(λ)+ q8(λ).

(3.2)

As usual, the relationsp(λ)|0) = 0 and(0|q(λ) = 0 for all p andq are satisfied as well as
the commutation relations

[p′ψ(λ), qφ(µ)] = ξ(λ, µ) = [pφ(λ), q
′
ψ(µ)] (3.3)

[p′ψ(λ), q8(µ)] = ξ̃ (λ, µ) = −[p8(λ), q
′
ψ(µ)] (3.4)

[p′ψ(λ), q
′
ψ(µ)] = η(λ, µ). (3.5)

The complex functionsξ(λ, µ) and ξ̃ (λ, µ) are equal to

ξ(λ, µ) = ξ(µ, λ) = 2ic

c2+ (λ− µ)2 ξ̃ (λ, µ) = 2(λ− µ)
(λ− µ)2+ c2

(3.6)

and

η(λ, µ) =
(

1

λ− µ+ ic

)2

+
(

1

λ− µ− ic

)2

. (3.7)
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However, we do not use explicit expressions (3.6) and (3.7) in this section.
We evaluate the mean value (3.1) in three steps. First, we consider an auxiliary

problem—the scalar case.

3.1. Scalar case

Consider the following mean value

(0|e{αψ ′(λ)f (φ(µ))}F([φ], [8])|0). (3.8)

Here F([φ], [8]) is a smooth functional, depending on the fieldsφ and8. A complex
functionf (z) becomes an operator-valued function because its argumentφ(µ) is an operator.
As usual such an expression should be understood as a formal Taylor series; therefore, we
assume thatf (z) is homomorphic within some circle|z| < ρ0.

The parameterα is a complex number such that the following restriction holds:

|α| · |f (zξ(λ, µ))| < |z| for |z| = ρ < ρ0

|ξ(λ, µ)| . (3.9)

The complex numbersλ andµ are fixed.
Let us decompose the exponent in a Taylor series,

e{αψ
′(λ)f (φ(µ))} =

∞∑
n=0

αn

n!
(ψ ′(λ))nf n(φ(µ)). (3.10)

We would like to emphasize that here we essentially used the commutativity of the fields
ψ ′ andφ.

In order to calculate(0|(ψ ′(λ))n we use the Cauchy integral representation

(ψ ′(λ))n = dn

dzn
ezψ

′(λ)
∣∣∣∣
z=0

= n!

2π i

∫
|z|=ρ

dz
ezψ

′(λ)

zn+1
. (3.11)

The evaluation of(0|ezψ ′(λ) is a standard problem in quantum field theory

(0|ezψ ′(λ) = ez
2η(λ,λ)/2(0|ezp′ψ (λ). (3.12)

After substituting this into (3.11), we obtain

(0|(ψ ′(λ))n = n!

2π i

∫
|z|=ρ

dz
ez

2η(λ,λ)/2

zn+1
(0|ezp′ψ (λ). (3.13)

Further substitution into (3.8) and (3.10) gives the expression for the mean value

(0|e{αψ ′(λ)f (φ(µ))}F([φ], [8])|0)

=
∞∑
n=0

αn

2π i

∫
|z|=ρ

dz
ez

2η(λ,λ)/2

zn+1
(0|ezp′ψ (λ)f n(φ(µ))F ([φ], [8])|0). (3.14)

Recall that creation and annihilation parts of the fieldsφ and8 commute with each other;
therefore, we have

(0|ezp′ψ (λ)f n(φ(µ))F ([φ], [8])|0) = (0|ezp′ψ (λ)f n(qφ(µ))F ([qφ ], [q8])|0)
= f n(zξ(λ, µ))(0|ezp′ψ (λ)F ([φ], [8])|0). (3.15)

If we substitute this into (3.14) we may calculate the sum with respect ton. Due to
restriction (3.9) this series is absolutely convergent:

(0|eαψ ′(λ)f (φ(µ))F ([φ], [8])|0) = 1

2π i

∫
|z|=ρ

dz
ez

2η(λ,λ)/2

z − αf (zξ(λ, µ))(0|e
zp′ψ (λ)F ([φ], [8])|0).

(3.16)
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Due to relation (3.9) and the Rouché theorem, the equation

z − αf (zξ(λ, µ)) = 0 (3.17)

has exactly one zero of the first orderz = z0 = z0(α) in the domain|z| < ρ. Let us
emphasize that (3.17) is a classical equation where only complex functions are involved
(i.e. no quantum operators). Thus, taking the integral with respect toz, we arrive at

(0|e{αψ ′(λ)f (φ(µ))}F([φ], [8])|0) = ez
2
0η(λ,λ)/2(0|ez0p

′
ψ (λ)F ([φ], [8])|0)

1− ∂
∂z0
f (z0ξ(λ, µ))

. (3.18)

The right-hand side may be further simplified

ez
2
0η(λ,λ)/2(0|ez0p

′
ψ (λ)F ([φ], [8])|0) = (0|ez0ψ

′(λ)F ([φ], [8])|0). (3.19)

Let us again recall that in the original formula (3.8)f (φ(µ)) was a quantum operator
since it depends on the quantum fieldφ(µ). The result of the above calculation shows that
this function may be replaced by a complex numberz0.

It is worth mentioning that one can analytically continue the result obtained with respect
to α into the domain where the inequality (3.9) is not valid. We propose the following
theorem.

Theorem 3.1.

(0|e{αψ ′(λ)f (φ(µ))}F([φ], [8])|0) = (0|ez0ψ
′(λ)F ([φ], [8])|0)

1− αf ′(z0ξ(λ, µ))
. (3.20)

Here the complex numberz0 can be found from the equation

z0 = αf (z0ξ(λ, µ)) (3.21)

and

f ′(z0ξ(λ, µ)) = ∂

∂z
f (zξ(λ, µ))

∣∣∣∣
z=z0

. (3.22)

Remark. Equation (3.21) may have many solutions if we do not impose restriction (3.9).
In this case one should choose the solutionz0 = z0(α), with the property:

z0(α)|α=0 = 0. (3.23)

Let us remind the reader that no operators are involved in equation (3.21) sincef (z) is
a complex function. This is the complex equation for the complex numberz0.

3.2. Matrix case

The method of calculating the mean value described above can be easily generalized for
more complicated cases. Namely let us consider the example:

(0| exp

{ N∑
k=1

ψ ′(λk)fk(φ(λk))
}
F([φ], [8])|0). (3.24)

It is clear that we may find the mean value in an analogous fashion to that for a scalar case.
Let us briefly describe the main steps of the corresponding derivation.

First, we have

exp

{ N∑
k=1

ψ ′(λk)fk(φ(λk))
}
=

N∏
j=1

∞∑
nj=0

1

nj !
(ψ ′(λj ))nj f

nj
j (φ(λj )). (3.25)
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The normal ordering ofψ ′(λj ) may be performed in a similar fashion to (3.11) and (3.12):

(0|
N∏
j=1

[ ∞∑
nj=0

1

nj !
(ψ ′(λj ))nj

]
= 1

(2π i)N

∫ N∏
j=1

dzj

z
nj+1
j

× exp

{
1

2

N∑
j,k=1

zj zkη(λj , λk)

}
(0|e

∑N
k=1 zkp

′
ψ (λk). (3.26)

Here each of the integrals is taken by circle, which appears to be a common domain of
analyticity of the functionsfk(z).

Next we find the mean value

(0|e
∑N

k=1 zkp
′
ψ (λk)

N∏
k=1

f
nk
k (φ(λk))F ([φ], [8])|0)

=
N∏
k=1

f
nk
k

( N∑
j=1

zj ξ(λj , λk)

)
(0|e

∑N
k=1 zkp

′
ψ (λk)F ([φ], [8])|0). (3.27)

Now we substitute this into the expression for our mean value (3.24) and sum with respect
to eachnk:

(0|e
∑N

k=1ψ
′(λk)fk(φ(λk))F ([φ], [8])|0)

= 1

(2π i)N

∫ N∏
j=1

dzj
e1/2

∑N
j,k=1 zj zkη(λj ,λk)(0|e

∑N
k=1 zkp

′
ψ (λk)F ([φ], [8])|0)∏N

j=1[zj − fj (
∑N

m=1 zmξ(λm, λj ))]
. (3.28)

In order to take thezj integral we introduce the complex numbersz0
j as solutions of the

system

z0
j = fj

( N∑
m=1

z0
mξ(λm, λj )

)
. (3.29)

We also define the matrixM:

Mjk = δjk − ∂

∂zj
fk

( N∑
m=1

zmξ(λm, λk)

)∣∣∣∣
zl=z0

l

. (3.30)

After evaluating thezj integration, we obtain the result

(0| exp

{ N∑
k=1

ψ ′(λk)fk(φ(λk))
}
F([φ], [8])|0) = (0| exp{∑N

k=1ψ
′(λk)z0

k }F([φ], [8])|0)
detM

.

(3.31)

As in the scalar case, system (3.29) may have many solutions. In this case one can
consider the replacementfk → αfk. After this, it is necessary to choose the solution of
(3.29), which approaches zero asα→ 0 and to continue this solution to the pointα = 1.

3.3. Continuous case

In order to evaluate the mean value (3.1) let us consider the continuous limit of (3.31):

λk+1 = λk +1 (3.32)

fk(φ(λk)) = 1f (λk|φ(λk)) (3.33)

z0
k = 1z(λk) (3.34)
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and take the limit1→ 0. We notice that the system of constraints in (3.29) turns into the
integral equation:

z(λ) = f
(
λ|
∫ ∞
−∞

dµz(µ)ξ(µ, λ)

)
. (3.35)

Furthermore, the matrixMjk becomes an integral operator with the kernel

M(λ,µ) = δ(λ− µ)− δ

δz(µ)
f

(
λ|
∫ ∞
−∞

ds z(s)ξ(s, λ)

)
. (3.36)

Equation (3.31) has the following continuous limit:

(0| exp

{∫ ∞
−∞

dλψ ′(λ)f (λ|(φ(µ))
}
F([φ], [8])|0)

= (detM)−1(0| exp

{∫ ∞
−∞

dλψ ′(λ)z(λ)
}
F([φ], [8])|0). (3.37)

Equations (3.35)–(3.37) are the main result of this section. We would like to emphasize
that the commutativity of the quantum fields (2.1) is extremely important for obtaining of
this result.

The following calculations are trivial. We have

(0| exp

{∫ ∞
−∞

dλψ ′(λ)z(λ)
}
= exp

{
1
2

∫ ∞
−∞

dλ dµη(λ, µ)z(λ)z(µ)

}
×(0| exp

{∫ ∞
−∞

dλp′ψ(λ)z(λ)
}
. (3.38)

The action of the operator exp{p′ψ } on the functionalF leads to the shift of the arguments
of the last one (see (2.20), (2.21)). We find

(0| exp

{∫ ∞
−∞

dλp′ψ(λ)z(λ)
}
F([φ], [8])|0)

= F
([∫ ∞

−∞
dλ z(λ)ξ(λ, µ)

]
,

[ ∫ ∞
−∞

dλ z(λ)ξ̃ (λ, µ)

])
. (3.39)

In the next section we shall use these results in order to evaluate the mean value of the
asymptotic expression (2.24).

4. The mean value of the leading term

In order to find the mean value of the leading term of asymptotics (2.24), we need only to
substitute the concrete expressions (2.26), (2.27) into equations (3.35)–(3.37) and (3.39).

An integral equation for thez-function is

z(λ) = − i

2π
sign(λ− λ0) ln{1− ϑ(λ)X(λ, λ0)} (4.1)

where

X(λ, λ0) ≡ 1+ exp

{
sign(λ− λ0)

(
ln
h(λ, λ0)

h(λ0, λ)
+
∫ ∞
−∞

dµ
2icz(µ)

c2+ (λ− µ)2
)}
. (4.2)

The integral operatorM has the kernel

M(λ,µ) = δ(λ− µ)− i

2π
sign(λ− λ0)

δ

δz(µ)
ln{1− ϑ(λ)X(λ, λ0)}. (4.3)
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After evaluating the variation derivative one should setz(λ) equal to the solution of (4.1).
The functionalF([φ], [8]) is given in (2.27). It consists of three factors: an exponential

factor, a power law correction with respect tot , and a constant factor, which depends only
on the ratiox/2t = λ0. Using (3.39) and the integral equation (4.1), we find the exponential
factor to be

exp

{
− i

∫ ∞
−∞

dλ (x − 2λt)z(λ)

}
. (4.4)

The next factor is a power law correction

(2t)(ν−1)2/2 (4.5)

where the expression forν follows from (2.16):

ν = i

2π
ln{[1− ϑ(λ0)(1+ e−φ(λ0))][1 − ϑ(λ0)(1+ eφ(λ0))]}. (4.6)

Instead ofφ(λ0) we substitute the integral expression,

φ(λ0)→ u(λ0) =
∫ ∞
−∞

dλ
2ic

c2+ (λ0− λ)2z(λ) (4.7)

where the functionz(λ) is a solution of (4.1). So the power law correction becomes

(2t)(ν̃−1)2/2 (4.8)

where

ν̃ = i

2π
ln{[1− ϑ(λ0)(1+ e−u(λ0))][1 − ϑ(λ0)(1+ eu(λ0))]}. (4.9)

Finally, the constant term is equal to

g = C̃([u(µ)], [v(µ)])ev(λ0) exp

{
1
2

∫ ∞
−∞

dλ dµη(λ, µ)z(λ)z(µ)

}
(4.10)

where

v(µ) =
∫ ∞
−∞

dλ
2(λ− µ)

c2+ (λ0− λ)2z(λ). (4.11)

Thus we obtain for the mean value (2.24) of the operatorQ(x, t)

(0|Q(x, t)|0) = g · e−itλ2
0−iht (2t)(ν̃−1)2/2(detM)−1 exp

{
− i

∫ ∞
−∞

dλ (x − 2λt)z(λ)

}
. (4.12)

This is the main result of this paper.
Expression (4.12) is the leading term of the asymptotic evaluation of the Fredholm

determinant representing the correlation function [1]. In the next publication we shall study
the corrections. The mean value of corrections can contribute to the leading term of the
asymptotic behaviour of the correlation function.
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